
Medical Multi-omics

Liu Yifeng, Pan Yunzhou & Tian Yuchen
Instructors: Yuan Yang, Hu Zeping, Zhao Yizi∗, Li Biao∗

December 26, 2022

Abstract

Medical multi-omics is a comprehensive approach for exploring the interaction of mul-
tiple substances in the body, including genomics, proteomics, metabolomics, etc. It has
the potential to discover new strategies for prevention and treatment of diseases. Based
on KEGG database, we developed and implemented 4 different methods to analyze vari-
ant multi-omics datasets related to Zika virus(ZIKV), COVID-19 and Three Negative Breast
Cancer(TNBC), including rule-based non-AI method, feed-forward network for partially un-
matched samples, SHAP analysis on XGBoost model and improved P-Net model. Our results
have revealed some significant disturbances for these diseases. Particularly, our method dis-
covered ENTPD1, which encodes CD39, as a potentially crucial gene for TNBC, which is
consistent with the experimental results as previously reported [1]. However, due to lack of
big datasets from large cohort samples, especially consistent multi-omic dataset, our analyses
are limited. It is promising that more discoveries can be made from large cohort datasets by
using our developed methods. See https://github.com/lauyikfung/multiomics for all the
codes.

1 Introduction

Multiomics is a comprehensive biological analysis approach on multiple omics including the
genomics, proteomics, transcriptomics, metabolomics etc. Synthesis of different omics can provide
researchers with a better understanding of the flow of information [2], and thus discovering more
associations between biological entities, new biomarkers and therapeutic targets for precise treat-
ment of diseases. Now analysis on the level of multi-omics is a burgeoning method for researching
diseases. However, although there are lots of high-throughput multi-omics data, most of the pre-
vious researches are limited to analysis on the statistics [3, 4], and some researches so far are just
simple superposition of monomics analysis [5].

Artificial Intelligence is a set of technologies which can capture the latent patterns and in-
explicit relationships among features of a great amount of samples. In recent years, more and
more medical scientists are applying AI methods to make breakthroughs in their fields [6, 7]. Our
project is focused on applying AI algorithms to break through the bottlenecks of traditional anal-
ysis strategies on integration of transcriptomics, proteomics and metabolomics data.

We are based on KEGG database1, which contains 50,650 genes, 19,418 compounds and 25,252
orthologs. They are also related by 11,776 reactions, 459 modules as well as 690 pathways. Near
100 thousand entities on KEGG database form a huge network of metabolism. And we are also
based on three different datasets:

• ZIKV dataset from Hu-Lab, including proteomics, metabolomics and genomics information
of healthy people and ZIKV patients;

∗Zhao Yizi from School of Pharmaceutical Science and Li Biao from Shanghai Qi Zhi Institute have helped
construct the KEGG database on Neo4j. Zhao also provided some ideas of these methods from a biological
perspective.

1See https://www.kegg.jp for details.
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Figure 1: Overview of our project. Strategy I is non-AI method, and other strategies are all AI
methods. All the methods are implemented by codes.

• COVID-19 dataset from [5], including proteomics and metabolomics information of healthy
people and COVID-19 patients; and

• TNBC dataset from [8], including metabolomics and transcriptomics information of different
subtypes of Triple Negative Breast Cancer.

However, all the datasets available are with some or all of the following defects:

• Lack of samples;

• Non-matching multi-omics data;

• Inexistence of many features in KEGG.

Based on different properties of datasets, we have developed variant analytical methods(See
Figure 1).

In detail, ZIKV dataset is with only 6 samples in transcriptomics with 20 thousand features,
16 samples in proteomics with 5 thousand features and 16 samples in metabolomics with 190 fea-
tures. Rich in number of features but lack of samples render us not to apply AI algorithms but do
just traditional statistics analysis on KEGG and adds restraints by using biological knowledge(See
Figure 1 Strategy I). The strategy is suitable for all kinds of datasets.

Another problem is that it is hard to collect dataset filled with matched samples [2, 5].
The “matched” sample means a single sample with corresponding multi-omics data. Almost all
available datasets have a great proportion of unmatched part, and in our work, we designed a
feed-forward network for partially unmatched samples, successfully utilizing the unmatched sam-
ples(See Figure 1 Strategy II). We also implemented the codes that include the adjacency matrix
combined with a residual widget, but due to the inexistence of many features in KEGG, the adja-
cency matrix is too scarce to be effective while we have got some discoveries from the residual part.

However, it is hard to recognise the important modules (or pathways), and then we applied
SHAP [9] analysis onto XGBoost [10] model, and by taking the curved average SHAP importance,
we also analyzed on module level(See Figure 1 Strategy III). It is suitable for medium-size datasets
with hundreds of samples.

Getting idea from [7], we also implemented a hierarchical feed-forward network encoding in-
teractions between features, modules and pathways(See Figure 1 Strategy IV). The model is
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estimated to be suitable for thousands of matched samples, but all three datasets are with less
than 600 matched samples, resulting an inevitable overfitting circumstance.

2 Related Work

The notion “omics” means a comprehensive, or global, assessment of a set of molecules [2].
Nowadays, it is easy to get large quantities of data of one omics or multiple omics from separate
sets of samples. With traditional methods of analyzing on statistics including log2FoldChange,
pvalueFDR and variance, the field of omic analysis has witnessed many breakthroughs: [4] used
univariate linear regression on log2FoldChange information to analyze COVID-19 samples; [11]
used pvalueFDR(q-value) and log2FoldChange to figure out the metabolism of diabetes patients.

And there are also lots of successful works applying AI methods on datasets with one omics
information. For example, [5] uses XGBoost and binary logistic regression classifiers to assist
classification on plasma protein abundance of COVID-19 samples; [7] uses a feed-forward network
to analysis on three levels of genomics; [6] uses evolutionary enhanced Markov clustering to apply
on proteomics data of yeast. And in our project, two or more omics data are integrated to unearth
interactions among different kinds of entities.

3 Methods

3.1 Non-AI Biological Knowledge-informed Integration

Based on the fact that there are only tens of samples in ZIKV dataset, we have implemented
an interface for querying the KEGG database and further processing(See Figure 2). This method
is universal for almost all types of datasets.

In detail, we first gathered data of all three omics and updated the log2FoldChange and pval-
ueFDR values on KEGG database. log2FoldChange is the logarithm of the ratio of the average
concentration in experimental group(ZIKV samples) and in control group(CTRL samples), denot-
ing the concentration difference. Since the concentration of many compounds in human bodies
may change exponentially, we just take the logarithm for computational convenience. PvalueFDR
is the adjusted pvalue(H1 : θ ̸= θ0) in hypothesis testing theory of statistics for controlling positive
false discovery rate[12]. The pvalueFDR is defined by:

pvalueFDRi = pvaluei ×
N

k
,

where N is the number of features and k is the rank of pvalue of feature i in increasing order. In
our experiments, the concentration of some compound changes credibly significantly(increasing or
decreasing) if pvalueFDR < 0.05 and |log2FoldChange| is greater than a threshold.

After getting the total graph by Cypher language and transforming it to iGraph2 via net-
workX3, we implemented with some elaborated restraints. We need to find the largest “accessible”
network, which means a connected network with “accessible” edges except for some undetected
intermediary nodes. “Accessible” edges includes 2 circumstances:

1)In reactions, only edges between triples in Table 1 are accessible. And in practice, if in some
reaction the majority of triples are accessible, we include the accessible ones.

2)Between protein and protein/gene: if the relationship is activation/(gene) expression, the
corresponding edge is accessible if both are increasing or decreasing; if the relationship is inhibi-
tion/repression, the corresponding edge is accessible if one increases and the other decreases.

2See https://igraph.org/ for details.
3See https://github.com/networkx/networkx for details.
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Figure 2: The diagram of Non-AI method. We used the pvalueFDR and log2FoldChange infor-
mation of each feature and update them onto KEGG database. By using Cypher language and
networkX, we can get the intended results, and we can also use iGraph for visualization.

Substrate Enzyme Product
No obvious change/decreasing Decreasing Decreasing
No obvious change/increasing Increasing Increasing

Increasing No obvious change/None Increasing
Decreasing No obvious change/None Decreasing

Table 1: The accessible triples in reactions.

For undetected intermediary nodes, we may predict the changing trend of it and only consider
the second type of accessible edges. If over 2/3 of the detected neighbouring nodes agree with one
trend(increasing/decreasing), we include edges connecting them with it. We found all accessible
networks by DFS, and the designed algorithm shown in Algorithm 1.

Since some pairs of compounds may be related to too many reactions, we also design programs
to remove these duplicate reaction nodes.

3.2 Further Analysis using Non-AI method

By previous method, we processed the ZIKV dataset and obtained a network that consists
of relations between elements such as compounds, genes. The relation network can be visualize
using iGraph on KEGG database.

We wanted to directly analyze the relationship network and tried to find some important
information using non-AI method. The following are some proper methods we have tried.

The first method is to do pruning on the relation network. By adjusting the threshold of
log2FoldChange, we obtained different connected graphs from the original relation network. Then
we did farther pruning on these connected graphs. Some important parts of the relationship
network may be found by comparing these graphs.

The second method we used is to study the relation network at module level. Module is a
concept in multi-omics. KEGG database provides the information of module. We partitioned the
relation network in the sense of module. Then we could study the importance of each module. For
instance, we studied the importance of each module by the number of compounds in the module.

We then focused on the compounds in the important modules. There are reactions taken
part between these compounds. We selected the reactions that involve compounds belonging to
different modules. These reactions could be viewed as important information of the relationship
network.

3.3 Feed-forward Network Analysis

COVID-19 dataset has 806 samples of proteomics data and 671 samples of metabolomics data
from the healthy people as well as T1, T2 and T3 periods of COVID-19 patients[5]. And we de-
signed the method of analyzing interactions through weights of feed-forward layer(See Figure 3, a).
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Algorithm 1 Finding Accessible network

1: Get the transformed graph G.
2: Find all the accessible edges of detected nodes and undetected intermediate nodes.
3: Clear off all the nodes with no accessible edges.
4: Denotes the number of remaining nodes as |V | and initialize cnt = 0, networkList = []

avail = [True, ..., T rue] denoting for the availability of each node.
5: while cnt < |V | do
6: if not avail[cnt] then
7: cnt← cnt+ 1
8: else
9: Initialize stack = [cnt], network = [] for a new accessible network

10: while len(stack) > 0 do
11: v ← stack.pop() and append v to network.
12: avail[v]← False
13: For edges e = (v, u), if avail[u] == True and u is not in stack, push u to the stack.
14: end while
15: Append network to networkList.
16: end if
17: end while
18: return networkList

Figure 3: An example of module
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However, the two sample groups are not completely coincident. About a half of samples are
with only one omics information. For efficient utilization of the datasets, we creatively intro-
duced input of “valid”, indicating the availability of corresponding part of data. And similar to
P-NET[7], we constructed two such networks for both omics. While for the multi-omics, to in-
clude the interaction between two omics, we creatively combined two feed-forward networks with
a third one with a residual connection in the first layer, which can reflect this kind of relationship
to some degree. The final result is a weighted average of two separate networks, and the third
network calculated the weights by softmax, where we introduced an additional input of the “valid”
parameter. After training the classification model, we analyzed the heat map of the residual layer
for salient interactions.

Figure 4: The structure of the feed-forward network analysis. a) the structure of feed-forward
network; c) KEGG graph; b) adjacency matrix taken from KEGG graph as a “mask” of weights
in the residual part.

We have also implemented an interface with the embedding of the adjacency matrix of KEGG
in the feed-forward network as the prior knowledge. For positive interactions(activation/(gene) ex-
pression) or accessible reactions, we just set the elements 1 and for negative interactions(inhibition/
repression), we just set -1. And we used it to “mask” the weight matrix of the residual part, de-
noting the connections in prior knowledge. However, since the number of detected features in the
dataset is much fewer than the number of nodes in KEGG, the resulting adjacency matrix is too
scarce for training, and we did not train with the adjacency matrix.

3.4 XGBoost with SHAP analysis

XGBoost is a machine learning algorithm with forest-shape structure used for prediction
(classification)[10], and SHAP tool can compute the SHAP values of a model to determine the
important features for classification. We used the SHAP to analyze at entity, module and pathway
levels.

The algorithm of XGBoost is in Algorithm 2.
Although there is also a function calculating feature importance in XGBoost, we used another

analyzing tool called SHAP(SHapley Additive exPlanation)[9]. In the SHAP model, suppose the
original model is f and the explanation model is g. We initialize a random set of z′ ∈ [0, 1]N ,

where N is the number of features, and it tries to ensure g(z′) = ϕ0 +
∑N

j=1 ϕjz
′
j ≈ f(hx(z

′))
whenever z′ ≈ x′ and x = hx(x

′) be a mapping function. Then we get

πx(z
′) =

(N − 1)(
N
|z′|

)
|z′|(N − |z′|)

, and we need to make linear regression to

g(x′) = ϕ0 +

N∑
j=1

ϕj
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Algorithm 2 XGBoost[10]

Require: training dataset {(xi, yi)}Ni=1, loss function L(y, F (x)), number of weak learners M ,
learning rate r.

1: Initialize model with a constant value: f̂(0)(x) = argminθ
∑N

i=1 L(yi, θ).
2: for all m = 1, ...,M : do

3: Compute the gradient matrix and Hessian matrix: ĝm(xi) = [∂L(yi,f(xi))
∂f(xi)

]f(x)=f̂(m−1)(x)
,

ĥm(xi) = [∂
2L(yi,f(xi))
∂f(xi)2

]f(x)=f̂(m−1)(x)
.

4: Fit a learner using the training set {xi,− ĝm(xi)

ĥm(xi)
}Ni=1 by solving the optimization problem:

ϕ̂m = argminϕ
∑N

i=1
ĥm(xi)

2 [− ĝm(xi)

ĥm(xi)
− ϕ(xi)]

2, f̂m(x) = rϕ̂m(x)

5: Update the model by f̂(m)(x) = f̂(m−1)(x) + f̂m(x).
6: end for
7: return f̂(x) = f̂(M)(x) =

∑M
m=0 f̂m(x).

by decreasing the loss of L(f, g, πx) =
∑

z′∈Z [f(hx(z
′)) − g(z′)]2πx(z

′). Then ϕ0 is the mean of
f(x) and ϕi is the SHAP value for feature i. And finally we can get

f(x) = g(x′) = ϕ0 +

N∑
i=1

ϕix
′
i. (1)

In Equation (1), the SHAP value ϕi is just like the contribution of feature i, hence we can use
SHAP value to analyze the importance of features. Moreover, we also conducted researches at
module and pathway levels according to average SHAP value of detected entities. We ignored the
pathways and modules with less than 3 detected entities, and got the ones with top 20 average
SHAP values for further analysis.

3.5 Improvement on P-NET

Based on P-NET[7], we add additional layers to reflect the interaction between units of different
levels(See Figure 5). In the model, between layers of neurons is a tanh activation after a full
connected layer masked by actual connections in KEGG. And there is also a sigmoid output
branch from each full connected layer representing the information from all levels of the hierarchy.
And the outcome is the average of the branches in each layer. However, it is very likely to overfit
with matched samples fewer than 1,000, so we expect a better dataset.

Figure 5: The structure of P-NET(left) and our improved model(right).

4 Experiments

4.1 Non-AI method

We have tried different thresholds of log2FoldChange from 0.0 to 1.5, and added different kinds
of restraints to get different results shown in Figure 6. It is shown that there is a sharp decline
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between threshold = 0.5 and 0.6, indicating an adequate value of threshold. Then we analyzed
the results when threshold = 0.6 by strict restraints and the largest accessible metabolic network
is shown in Figure 7. It is clear enough and ready to be further biological analysis.

Figure 6: The numbers of total and reaction nodes in the largest accessible networks of different
thresholds of log2FoldChange and different restraints. The strict restraints are to remove reaction
nodes with only one detected neightbours.

Figure 7: The largest accessible metabolic network for strict restraints when log2FoldChange
threshold=0.6. It is clear and ready for further biological analysis.

4.2 Feed-forward Network Method for COVID-19 Dataset

We have trained the classification model on COVID-19 dataset by using information of only
proteomics, only metabolomics and both omics. And the validation and test accuracies are shown
in Table 2.

Split Proteomics Metabolomics Both
Validation 78.4% 62.8% 77.3%

test 79.0% 71.8% 74.2%

Table 2: The validation and test accuracies of the three experiments.

With the accuracies near 75%, we then got the residual weight matrix and drew a heat
map(Figure 8). It is found that there are obvious connections between IFNG and some other
compounds, showing a potential research direction.
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Figure 8: The heat map of the residual weight matrix. The weights of IFNG to some other
compounds are the most salient, showing a potential research direction.

4.3 XGBoost with SHAP Analysis

We conducted SHAP analysis on the XGBoost model trained on COVID-19 and TNBC
datasets. On COVID-19 dataset, the test accuracy is 78.5% and the SHAP analysis result is
shown in Figure 9. We can see that the LIF protein and cysteine sulfate are the most significant
indicators of the healthy status of samples, while the DDX58 is the most important indicator for
infection of COVID-19, which can be potential for a further medical analysis.

Figure 9: The bar chart for mean absolute SHAP importance. Classes 0, 1, 2 and 3 indicate
healthy group, T1, T2 and T3 periods of COVID-19 patients, respectively.

We also conducted researches on TNBC dataset. The trained XGBoost model has an accuracy
of 77.6% on test dataset. On the level of entity, we have discovered that ENTPD1 is the most
salient. It encodes CD39, a popular research objective of immunotherapy, which can hydrolyze
extracellular ATP into AMP. The expression level of CD39 has been increased among various
tumors. Our discoveries are consistent with the experiments of [1]., it is mentioned that CD39
and CD73 are expressed in TNBC cell lines, and experiment results show that CD39 is the main
enzyme responsible for ATP hydrolysis in TNBC. It is expected to do more biological experiments
to validate other results of this method and reveal more mechanisms.
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Figure 10: Visualization of the 20 most important modules with highest SHAP importances. Blue,
green, red and orange nodes are modules, orthologs, genes and compounds, respectively.

On the level of pathway, we have visualized the 20 most important modules with highest SHAP
importances, shown in Figure 10. We have found that metabolic pathways related to Tryptophan
and C5 isoprene are most potential indicators of subtypes of TNBC.

5 Discussion & Conclusion

Some of our methods are just implemented with code but not applied because we are short
of datasets with many matched samples. And in our applied models, due to the few number of
samples, the accuracies are not so high and the validation and test losses are still high, showing
a sign of overfitting. On one hand, we should improve the structure of our model for preventing
overfitting; on the other hand, we should apply the model with datasets of more samples for a
better result. Hopefully, currently Hu-Lab is trying to collect more comprehensive and consistent
datasets; by using the methods we have developed, we can anticipate further potential medical
discoveries in the future.

Moreover, we have discovered some potential research objectives including LIF, DDX58, IFNG,
etc. However, these findings should be tested in biological experiments which would take a long
period of time.

All in all, we have implemented 1 rule-based and 3 AI methods for 3 datasets, from the generally
suitable strategy to strategy suitable for high-throughput high-quality datasets. We have found
ENTPD1 for TNBC which is validated by biological experiments, proving the efficiency of our
methods to some degree. And we have also discovered some potential research directions for
further analysis.
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